Free monotone transport without a trace

Brent Nelson

UCLA

October 30, 2013

Brent Nelson (UCLA)

Free monotone transport without a trace

- ₹ 🗐 🕨 October 30, 2013

< □ > < 同 > < 三 >

3

590

1 / 38

• Let (M, φ) be a von Neumann algebra with a faithful state: non-commutative probability space.

3

Sac

イロト イポト イヨト イヨト

- Let (M, φ) be a von Neumann algebra with a faithful state: non-commutative probability space.
- Elements $X \in M$ are non-commutative random variables.

イロト イポト イヨト イヨト

3

200

- Let (M, φ) be a von Neumann algebra with a faithful state: non-commutative probability space.
- Elements $X \in M$ are non-commutative random variables.
- Law of X, φ_X : $\mathbb{C}[t] \ni p(t) \mapsto \varphi(p(X))$.

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Let (M, φ) be a von Neumann algebra with a faithful state: non-commutative probability space.
- Elements $X \in M$ are non-commutative random variables.
- Law of X, φ_X : $\mathbb{C}[t] \ni p(t) \mapsto \varphi(p(X))$.
- For an *N*-tuple $X = (X_1, \ldots, X_N)$, φ_X : $\mathbb{C} \langle t_1, \ldots, t_N \rangle \ni p(t_1, \ldots, t_N) \mapsto \varphi(p(X_1, \ldots, X_N))$.

- Let (M, φ) be a von Neumann algebra with a faithful state: non-commutative probability space.
- Elements $X \in M$ are non-commutative random variables.
- Law of X, φ_X : $\mathbb{C}[t] \ni p(t) \mapsto \varphi(p(X))$.
- For an *N*-tuple $X = (X_1, \ldots, X_N)$, φ_X : $\mathbb{C} \langle t_1, \ldots, t_N \rangle \ni p(t_1, \ldots, t_N) \mapsto \varphi(p(X_1, \ldots, X_N))$.
- All random variables in this talk will be self-adjoint and non-commutative.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

• Let
$$X = (X_1, \ldots, X_N) \subset (M, \varphi)$$
 and $Z = (Z_1, \ldots, Z_N) \subset (L, \psi)$.

Brent Nelson (UCLA)

Free monotone transport without a trace

October 30, 2013 3 / 38

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- Let $X = (X_1, \ldots, X_N) \subset (M, \varphi)$ and $Z = (Z_1, \ldots, Z_N) \subset (L, \psi)$.
- Transport from φ_X to ψ_Z is $Y = (Y_1, \ldots, Y_N) \subset W^*(X_1, \ldots, X_N)$ so that

$$\varphi(p(Y_1,\ldots,Y_N)) = \psi(p(Z_1,\ldots,Z_N)) \qquad \forall p \in \mathbb{C} \langle t_1,\ldots,t_N \rangle;$$

that is, $\psi_Z = \varphi_Y$.

200

• □ ▶ < □ ▶ </p>

- Let $X = (X_1, \ldots, X_N) \subset (M, \varphi)$ and $Z = (Z_1, \ldots, Z_N) \subset (L, \psi)$.
- Transport from φ_X to ψ_Z is $Y = (Y_1, \dots, Y_N) \subset W^*(X_1, \dots, X_N)$ so that

$$\varphi(p(Y_1,\ldots,Y_N)) = \psi(p(Z_1,\ldots,Z_N)) \qquad \forall p \in \mathbb{C} \langle t_1,\ldots,t_N \rangle;$$

that is, $\psi_Z = \varphi_Y$.

• Implies $(W^*(Y_1,\ldots,Y_N),\varphi) \cong (W^*(Z_1,\ldots,Z_N),\psi).$

・ロト ・ 同ト ・ ヨト ・ ヨ・

- Let $X = (X_1, \ldots, X_N) \subset (M, \varphi)$ and $Z = (Z_1, \ldots, Z_N) \subset (L, \psi)$.
- Transport from φ_X to ψ_Z is $Y = (Y_1, \dots, Y_N) \subset W^*(X_1, \dots, X_N)$ so that

$$\varphi(p(Y_1,\ldots,Y_N)) = \psi(p(Z_1,\ldots,Z_N)) \qquad \forall p \in \mathbb{C} \langle t_1,\ldots,t_N \rangle;$$

that is, $\psi_Z = \varphi_Y$.

- Implies $(W^*(Y_1,\ldots,Y_N),\varphi) \cong (W^*(Z_1,\ldots,Z_N),\psi).$
- And there is a state-preserving embedding of W^{*}(Z₁,..., Z_N) into W^{*}(X₁,..., X_N).

・ロト ・ 同ト ・ ヨト ・ ヨ・

Let H_ℝ = span{e₁,..., e_N}, a real Hilbert space with ⟨·, ·⟩, complex linear in the second coordinate.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

- Setup
- Let $\mathcal{H}_{\mathbb{R}} = \text{span}\{e_1, \ldots, e_N\}$, a real Hilbert space with $\langle \cdot, \cdot \rangle$, complex linear in the second coordinate.
- Let $\{U_t : t \in \mathbb{R}\}$ be a one parameter family of unitaries and let A be their generator: $A^{it} = U_t$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Setup
- Let $\mathcal{H}_{\mathbb{R}} = \text{span}\{e_1, \ldots, e_N\}$, a real Hilbert space with $\langle \cdot, \cdot \rangle$, complex linear in the second coordinate.
- Let $\{U_t : t \in \mathbb{R}\}$ be a one parameter family of unitaries and let A be their generator: $A^{it} = U_t$.
- Can assume $A = \text{diag}\{A_1, \ldots, A_L, 1 \ldots, 1\}$ with

$$A_{k} = \frac{1}{2} \begin{pmatrix} \lambda_{k} + \lambda_{k}^{-1} & -i(\lambda_{k} - \lambda_{k}^{-1}) \\ i(\lambda_{k} - \lambda_{k}^{-1}) & \lambda_{k} + \lambda_{k}^{-1} \end{pmatrix} \qquad \forall k = 1, \dots, L$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Let $\mathcal{H}_{\mathbb{R}} = \text{span}\{e_1, \ldots, e_N\}$, a real Hilbert space with $\langle \cdot, \cdot \rangle$, complex linear in the second coordinate.
- Let $\{U_t : t \in \mathbb{R}\}$ be a one parameter family of unitaries and let A be their generator: $A^{it} = U_t$.
- Can assume $A = \text{diag}\{A_1, \ldots, A_L, 1 \ldots, 1\}$ with

$$A_{k} = \frac{1}{2} \begin{pmatrix} \lambda_{k} + \lambda_{k}^{-1} & -i(\lambda_{k} - \lambda_{k}^{-1}) \\ i(\lambda_{k} - \lambda_{k}^{-1}) & \lambda_{k} + \lambda_{k}^{-1} \end{pmatrix} \qquad \forall k = 1, \dots, L$$

• Then spectrum(A) = {1, $\lambda_1^{\pm 1}, \ldots, \lambda_L^{\pm 1}$ }, $A^T = A^{-1}$, $(A^{it})^* = (A^{it})^T = A^{-it}$, and

$$\sum_{j=1}^{\mathsf{N}} |[\mathsf{A}]_{ij}| \leq \max\{1, \lambda_1^{\pm 1}, \dots, \lambda_L^{\pm 1}\} \leq ||\mathsf{A}|| \qquad \forall i = 1, \dots, \mathsf{N}.$$

▲日▼▲□▼▲□▼▲□▼ □ − つくで

• Let $\mathcal{H}_{\mathbb{C}} = \mathcal{H}_{\mathbb{R}} + i\mathcal{H}_{\mathbb{R}}$ and define

$$\langle x, y \rangle_U = \left\langle \frac{2}{1+A^{-1}}x, y \right\rangle, \qquad x, y \in \mathcal{H}_{\mathbb{C}}.$$

Let $\mathcal{H} = \overline{\mathcal{H}_{\mathbb{C}}}^{\|\cdot\|_U}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

• Let $\mathcal{H}_{\mathbb{C}}=\mathcal{H}_{\mathbb{R}}+i\mathcal{H}_{\mathbb{R}}$ and define

$$\langle x,y
angle_U = \left\langle rac{2}{1+A^{-1}}x,y
ight
angle, \qquad x,y \in \mathcal{H}_{\mathbb{C}}.$$

Let $\mathcal{H} = \overline{\mathcal{H}_{\mathbb{C}}}^{\|\cdot\|_U}$.

• The *q*-Fock space $\mathcal{F}_q(\mathcal{H})$ is the completion of $\mathbb{C}\Omega \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}$ with respect to the inner product

$$\langle f_1 \otimes \cdots \otimes f_n, g_1 \otimes \cdots \otimes g_m \rangle_{U,q} \\ = \delta_{n=m} \sum_{\pi \in S_n} q^{i(\pi)} \langle f_1, g_{\pi(1)} \rangle_U \cdots \langle f_n, g_{\pi(n)} \rangle_U$$

200

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

• Let $\mathcal{H}_{\mathbb{C}} = \mathcal{H}_{\mathbb{R}} + i\mathcal{H}_{\mathbb{R}}$ and define

$$\langle x,y
angle_U = \left\langle rac{2}{1+A^{-1}}x,y
ight
angle, \qquad x,y \in \mathcal{H}_{\mathbb{C}}.$$

Let $\mathcal{H} = \overline{\mathcal{H}_{\mathbb{C}}}^{\|\cdot\|_U}$.

• The *q*-Fock space $\mathcal{F}_q(\mathcal{H})$ is the completion of $\mathbb{C}\Omega \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}$ with respect to the inner product

$$\langle f_1 \otimes \cdots \otimes f_n, g_1 \otimes \cdots \otimes g_m \rangle_{U,q} \\ = \delta_{n=m} \sum_{\pi \in S_n} q^{i(\pi)} \langle f_1, g_{\pi(1)} \rangle_U \cdots \langle f_n, g_{\pi(n)} \rangle_U$$

• In particular, $\mathcal{F}_0(\mathcal{H})$ is the usual Fock space $\mathcal{F}(\mathcal{H})$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

• For $f \in \mathcal{H}$ we densely define the *left q-creation operator* $l_q(f) \in \mathcal{B}(\mathcal{F}_q(\mathcal{H}))$ by

$$l_q(f)\Omega = f$$

$$l_q(f)g_1 \otimes \cdots \otimes g_n = f \otimes g_1 \otimes \cdots \otimes g_n$$

< 日 > < 同 > < 三 > < 三 >

3

SQC

• For $f \in \mathcal{H}$ we densely define the *left q-creation operator* $l_q(f) \in \mathcal{B}(\mathcal{F}_q(\mathcal{H}))$ by

$$l_q(f)\Omega = f$$

$$l_q(f)g_1 \otimes \cdots \otimes g_n = f \otimes g_1 \otimes \cdots \otimes g_n$$

• Its adjoint, the *left q-annihilation operator*, $I_q(f)^*$ is defined densely by

$$l_q(f)^* \Omega = 0$$

$$l_q(f)^* g_1 \otimes \cdots \otimes g_n = \sum_{k=1}^n q^{k-1} \langle f, g_k \rangle_U g_1 \otimes \cdots \otimes \hat{g_k} \otimes \cdots \otimes g_n$$

• For $f \in \mathcal{H}$ we densely define the *left q-creation operator* $l_q(f) \in \mathcal{B}(\mathcal{F}_q(\mathcal{H}))$ by

$$l_q(f)\Omega = f$$

$$l_q(f)g_1 \otimes \cdots \otimes g_n = f \otimes g_1 \otimes \cdots g_n$$

• Its adjoint, the *left q-annihilation operator*, $I_q(f)^*$ is defined densely by

$$l_q(f)^* \Omega = 0$$

$$l_q(f)^* g_1 \otimes \cdots \otimes g_n = \sum_{k=1}^n q^{k-1} \langle f, g_k \rangle_U g_1 \otimes \cdots \otimes \hat{g_k} \otimes \cdots \otimes g_n$$

• We let $s_q(f) = l_q(f) + l_q(f)^*$, and $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)'' = W^*(s_q(f) \colon f \in \mathcal{H}_{\mathbb{R}}).$

• Ω is cyclic and separating for $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$ and hence the vector state $\varphi(\cdot) = \langle \Omega, \cdot \Omega \rangle_{U,q}$ is a faithful, non-degenerate state (*free quasi-free state*)

・ロト ・ 同ト ・ ヨト ・ ヨ・

- Ω is cyclic and separating for $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$ and hence the vector state $\varphi(\cdot) = \langle \Omega, \cdot \Omega \rangle_{U,q}$ is a faithful, non-degenerate state (*free quasi-free state*)
- Throughout, M shall denote $\Gamma_0(\mathcal{H}_{\mathbb{R}}, U_t)'' = W^*(X_1, \ldots, X_N)$, with $X_j := s_0(e_j)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Setup

- Ω is cyclic and separating for $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$ and hence the vector state $\varphi(\cdot) = \langle \Omega, \cdot \Omega \rangle_{U, \sigma}$ is a faithful, non-degenerate state (*free quasi-free* state
- Throughout, M shall denote $\Gamma_0(\mathcal{H}_{\mathbb{R}}, U_t)'' = W^*(X_1, \ldots, X_N)$, with $X_i := s_0(e_i).$
- With respect to the vacuum vector state φ , the X_i are centered semicircular random variables of variance 1, but aren't free unless $U_t = id$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Ω is cyclic and separating for $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$ and hence the vector state $\varphi(\cdot) = \langle \Omega, \cdot \Omega \rangle_{U, \sigma}$ is a faithful, non-degenerate state (*free quasi-free* state
- Throughout, M shall denote $\Gamma_0(\mathcal{H}_{\mathbb{R}}, U_t)'' = W^*(X_1, \ldots, X_N)$, with $X_i := s_0(e_i).$
- With respect to the vacuum vector state φ , the X_i are centered semicircular random variables of variance 1, but aren't free unless $U_t = id$.
- Application of result: for small values of |q|, $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$ is isomorphic to M.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• Modular group:
$$\sigma^{arphi}_z(X_j) = \sum_{k=1}^N [A^{iz}]_{jk} X_k$$
 for $z \in \mathbb{C}$

996

- Modular group: $\sigma_z^{\varphi}(X_i) = \sum_{k=1}^{N} [A^{iz}]_{ik} X_k$ for $z \in \mathbb{C}$
- Using the vector notation $X = (X_1, \ldots, X_N)$ we have $\sigma_z^{\varphi}(X) = A^{iz}X$.

< □ > < 同 > < 回 >

500

- Modular group: $\sigma^{\varphi}_{z}(X_{j}) = \sum_{k=1}^{N} [A^{iz}]_{jk}X_{k}$ for $z \in \mathbb{C}$
- Using the vector notation $X = (X_1, \ldots, X_N)$ we have $\sigma_z^{\varphi}(X) = A^{iz}X$.
- KMS condition:

$$\varphi(X_j P) = \varphi(P\sigma_{-i}(X_j)) = \varphi(P[AX]_j)$$

$$\varphi(PX_j) = \varphi(\sigma_i(X_j)P) = \varphi([A^{-1}X]_jP).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の ()

•
$$\mathscr{P} := \mathbb{C} \langle X_1, \ldots, X_N \rangle \subset M.$$

Brent Nelson (UCLA)

996

- $\mathscr{P} := \mathbb{C} \langle X_1, \ldots, X_N \rangle \subset M.$
- Can write each $P \in \mathscr{P}$ as

$$P = \sum_{n=0}^{\deg(P)} \sum_{|\underline{j}|=n} c(\underline{j}) X_{\underline{j}} = \sum_{n=0}^{\deg(P)} \pi_n(P), \qquad c(\underline{j}) \in \mathbb{C}$$

996

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

- $\mathscr{P} := \mathbb{C} \langle X_1, \ldots, X_N \rangle \subset M.$
- Can write each $P \in \mathscr{P}$ as

$$P = \sum_{n=0}^{\deg(P)} \sum_{|\underline{j}|=n} c(\underline{j}) X_{\underline{j}} = \sum_{n=0}^{\deg(P)} \pi_n(P), \qquad c(\underline{j}) \in \mathbb{C}$$

• For *R* > 0

$$\|P\|_{R} := \sum_{n=0}^{\deg(P)} \sum_{|\underline{j}|=n} |c(\underline{j})| R^{n} = \sum_{n} \|\pi_{n}(P)\|_{R},$$

defines a Banach norm on \mathscr{P} .

200

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

- $\mathscr{P} := \mathbb{C} \langle X_1, \ldots, X_N \rangle \subset M.$
- Can write each $P \in \mathscr{P}$ as

$$P = \sum_{n=0}^{\deg(P)} \sum_{|\underline{j}|=n} c(\underline{j}) X_{\underline{j}} = \sum_{n=0}^{\deg(P)} \pi_n(P), \qquad c(\underline{j}) \in \mathbb{C}$$

• For *R* > 0

$$\|P\|_{R} := \sum_{n=0}^{\deg(P)} \sum_{|\underline{j}|=n} |c(\underline{j})| R^{n} = \sum_{n} \|\pi_{n}(P)\|_{R},$$

defines a Banach norm on \mathscr{P} . • $\mathscr{P}^{(R)} = \overline{\mathscr{P}}^{\|\cdot\|_R}$

500

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

- $\mathscr{P} := \mathbb{C} \langle X_1, \ldots, X_N \rangle \subset M.$
- Can write each $P \in \mathscr{P}$ as

$$P = \sum_{n=0}^{\deg(P)} \sum_{|\underline{j}|=n} c(\underline{j}) X_{\underline{j}} = \sum_{n=0}^{\deg(P)} \pi_n(P), \qquad c(\underline{j}) \in \mathbb{C}$$

• For *R* > 0

$$\|P\|_{R} := \sum_{n=0}^{\deg(P)} \sum_{|\underline{j}|=n} |c(\underline{j})| R^{n} = \sum_{n} \|\pi_{n}(P)\|_{R},$$

defines a Banach norm on \mathcal{P} .

- $\mathscr{P}^{(R)} = \overline{\mathscr{P}}^{\|\cdot\|_R}$
- If $R \ge 2 \ge ||X_j||$, then $\mathscr{P}^{(R)} \subset M$.

200

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

•
$$\mathscr{P}_{\varphi} = \{ P \in \mathscr{P} : \sigma_i(P) = P \} = M_{\varphi} \cap \mathscr{P}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- $\mathscr{P}_{\varphi} = \{ P \in \mathscr{P} : \sigma_i(P) = P \} = M_{\varphi} \cap \mathscr{P}.$
- Define $\rho: \mathscr{P} \to \mathscr{P}$ on monomials by

$$\rho(X_{j_1}\cdots X_{j_n})=\sigma_{-i}(X_{j_n})X_{i_1}\cdots X_{j_{n-1}}.$$

10 / 38

- $\mathscr{P}_{\varphi} = \{ P \in \mathscr{P} \colon \sigma_i(P) = P \} = M_{\varphi} \cap \mathscr{P}.$
- Define $\rho \colon \mathscr{P} \to \mathscr{P}$ on monomials by

$$\rho(X_{j_1}\cdots X_{j_n})=\sigma_{-i}(X_{j_n})X_{i_1}\cdots X_{j_{n-1}}.$$

• We call $\rho^k(P)$ for $k \in \mathbb{Z}$ a σ -cyclic rearrangement of P.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の ()

- $\mathscr{P}_{\omega} = \{P \in \mathscr{P} : \sigma_i(P) = P\} = M_{\omega} \cap \mathscr{P}.$
- Define $\rho: \mathscr{P} \to \mathscr{P}$ on monomials by

$$\rho(X_{j_1}\cdots X_{j_n})=\sigma_{-i}(X_{j_n})X_{i_1}\cdots X_{j_{n-1}}.$$

• We call $\rho^k(P)$ for $k \in \mathbb{Z}$ a σ -cyclic rearrangement of P. Define

$$\|P\|_{R,\sigma} = \sum_{n=0}^{\deg(P)} \sup_{k_n \in \mathbb{Z}} \left\| \rho^{k_n}(\pi_n(P)) \right\|_R,$$

is a Banach norm on $\mathscr{P}^{finite} = \{ P \in \mathscr{P} : ||P||_{R,\sigma} < \infty \}.$

10 / 38
- $\mathscr{P}_{\varphi} = \{ P \in \mathscr{P} : \sigma_i(P) = P \} = M_{\varphi} \cap \mathscr{P}.$
- Define $\rho \colon \mathscr{P} \to \mathscr{P}$ on monomials by

$$\rho(X_{j_1}\cdots X_{j_n})=\sigma_{-i}(X_{j_n})X_{i_1}\cdots X_{j_{n-1}}.$$

We call ρ^k(P) for k ∈ Z a σ-cyclic rearrangement of P.
Define

$$\|P\|_{R,\sigma} = \sum_{n=0}^{\deg(P)} \sup_{k_n \in \mathbb{Z}} \left\| \rho^{k_n}(\pi_n(P)) \right\|_R,$$

is a Banach norm on $\mathscr{P}^{finite} = \{P \in \mathscr{P} \colon ||P||_{R,\sigma} < \infty\}.$ • $\mathscr{P}_{\varphi} \subset \mathscr{P}^{finite}$, in fact $||P||_{R,\sigma} \leq ||A||^{\deg(P)-1} ||P||_{R}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

- $\mathscr{P}_{\omega} = \{ P \in \mathscr{P} : \sigma_i(P) = P \} = M_{\omega} \cap \mathscr{P}.$
- Define $\rho: \mathscr{P} \to \mathscr{P}$ on monomials by

$$\rho(X_{j_1}\cdots X_{j_n})=\sigma_{-i}(X_{j_n})X_{i_1}\cdots X_{j_{n-1}}.$$

• We call $\rho^k(P)$ for $k \in \mathbb{Z}$ a σ -cyclic rearrangement of P. Define

$$\|P\|_{R,\sigma} = \sum_{n=0}^{\deg(P)} \sup_{k_n \in \mathbb{Z}} \left\| \rho^{k_n}(\pi_n(P)) \right\|_R,$$

is a Banach norm on $\mathscr{P}^{finite} = \{ P \in \mathscr{P} : ||P||_{R,\sigma} < \infty \}.$ • $\mathscr{P}_{\varphi} \subset \mathscr{P}^{\text{finite}}$, in fact $\|P\|_{R,\sigma} \leq \|A\|^{\deg(P)-1} \|P\|_{R}$. • $\mathcal{Q}(R,\sigma) = \overline{\mathcal{Q}finite}^{\|\cdot\|_{R,\sigma}}$

• We let $\mathscr{P}_{\varphi}^{(R)}$ and $\mathscr{P}_{\varphi}^{(R,\sigma)}$ denote the elements of the respective algebras which are fixed by σ_i .

<=> = √Q (~

- We let $\mathscr{P}_{\varphi}^{(R)}$ and $\mathscr{P}_{\varphi}^{(R,\sigma)}$ denote the elements of the respective algebras which are fixed by σ_i .
- Let $\mathscr{P}_{c.s.}^{(R,\sigma)} = \{P : \mathscr{P}^{(R,\sigma)} : \rho(P) = P\}$ be the σ -cyclically symmetric elements.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- We let $\mathscr{P}_{\varphi}^{(R)}$ and $\mathscr{P}_{\varphi}^{(R,\sigma)}$ denote the elements of the respective algebras which are fixed by σ_i .
- Let 𝒫^(R,σ)_{c.s.} = {P: 𝒫^(R,σ): ρ(P) = P} be the σ-cyclically symmetric elements.
- On $(\mathscr{P}^{(R)})^N$ and $(\mathscr{P}^{(R,\sigma)})^N$ we use the max-norm, which we still denote $\|\cdot\|_R$ and $\|\cdot\|_{R,\sigma}$.

・ロット 4 回 > ・ 4 回 > ・ 4 回 > ・ 4 回 >

• Let $\delta_j : \mathscr{P} \to \mathscr{P} \otimes \mathscr{P}^{op}$ be Voiculescu's free difference quotients, defined by $\delta_j(X_k) = \delta_{j=k} 1 \otimes 1$ and the Leibniz rule.

- Let $\delta_j \colon \mathscr{P} \to \mathscr{P} \otimes \mathscr{P}^{op}$ be Voiculescu's free difference quotients, defined by $\delta_j(X_k) = \delta_{j=k} 1 \otimes 1$ and the Leibniz rule.
- Conventions on $\mathscr{P}\otimes \mathscr{P}^{op}$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ (~)

- Let $\delta_j \colon \mathscr{P} \to \mathscr{P} \otimes \mathscr{P}^{op}$ be Voiculescu's free difference quotients, defined by $\delta_j(X_k) = \delta_{j=k} 1 \otimes 1$ and the Leibniz rule.
- Conventions on $\mathscr{P} \otimes \mathscr{P}^{op}$:
 - Suppress "o" notation: $a \otimes b^{\circ} \mapsto a \otimes b$
 - $a \otimes b \# c \otimes d = (ac) \otimes (db)$
 - $a \otimes b \# c = acb, m(a \otimes b) = ab$

▲ ∃ ▶ ∃ • 𝔍 𝔅

- Let δ_j: 𝒫 → 𝒫 ⊗ 𝒫^{op} be Voiculescu's free difference quotients, defined by δ_j(X_k) = δ_{j=k}1 ⊗ 1 and the Leibniz rule.
- Conventions on $\mathscr{P} \otimes \mathscr{P}^{op}$:
 - Suppress "o" notation: $a \otimes b^{\circ} \mapsto a \otimes b$
 - $a \otimes b \# c \otimes d = (ac) \otimes (db)$
 - $a \otimes b \# c = acb, m(a \otimes b) = ab$
 - $(a \otimes b)^* = a^* \otimes b^*$
 - $(a \otimes b)^{\dagger} = b^* \otimes a^*$
 - $(a \otimes b)^\diamond = b \otimes a$

Image: Image

- Let δ_j: 𝒫 → 𝒫 ⊗ 𝒫^{op} be Voiculescu's free difference quotients, defined by δ_j(X_k) = δ_{j=k}1 ⊗ 1 and the Leibniz rule.
- Conventions on $\mathscr{P} \otimes \mathscr{P}^{op}$:
 - Suppress "o" notation: $a \otimes b^{\circ} \mapsto a \otimes b$
 - $a \otimes b \# c \otimes d = (ac) \otimes (db)$
 - $a \otimes b \# c = acb, m(a \otimes b) = ab$
 - $(a \otimes b)^* = a^* \otimes b^*$
 - $(a \otimes b)^{\dagger} = b^* \otimes a^*$
 - $(a \otimes b)^{\diamond} = b \otimes a$
- As a $\mathscr{P} \mathscr{P}$ bimodule: $c \cdot (a \otimes b) = (ca) \otimes b$ and $(a \otimes b) \cdot c = a \otimes (bc)$

◆母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q ()

$$\alpha_{jk} = \left[\frac{2}{1+A}\right]_{jk} = \varphi(X_k X_j),$$

then $\overline{\alpha_{jk}} = \alpha_{kj}$, $\alpha_{jj} = 1$, and $|\alpha_{jk}| \le 1$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

$$\alpha_{jk} = \left[\frac{2}{1+A}\right]_{jk} = \varphi(X_k X_j),$$

then $\overline{\alpha_{ik}} = \alpha_{ki}, \ \alpha_{ii} = 1$, and $|\alpha_{ik}| \leq 1$.

• For each *j* define σ -difference quotient $\partial_j = \sum_{k=1}^N \alpha_{kj} \delta_k$

$$\alpha_{jk} = \left[\frac{2}{1+A}\right]_{jk} = \varphi(X_k X_j),$$

then $\overline{\alpha_{jk}} = \alpha_{kj}$, $\alpha_{jj} = 1$, and $|\alpha_{jk}| \le 1$.

- For each *j* define σ -difference quotient $\partial_j = \sum_{k=1}^N \alpha_{kj} \delta_k$
- We consider this derivation because φ(X_jP) = φ ⊗ φ^{op}(∂_j(P)) for P ∈ 𝒫.

$$\alpha_{jk} = \left[\frac{2}{1+A}\right]_{jk} = \varphi(X_k X_j),$$

then $\overline{\alpha_{jk}} = \alpha_{kj}$, $\alpha_{jj} = 1$, and $|\alpha_{jk}| \le 1$.

- For each *j* define σ -difference quotient $\partial_j = \sum_{k=1}^N \alpha_{kj} \delta_k$
- We consider this derivation because φ(X_jP) = φ ⊗ φ^{op}(∂_j(P)) for P ∈ 𝒫.
- Define another derivation $\bar{\partial}_j$ so that $\partial_j(P)^{\dagger} = \bar{\partial}_j(P^*)$.

$$\alpha_{jk} = \left[\frac{2}{1+A}\right]_{jk} = \varphi(X_k X_j),$$

then $\overline{\alpha_{jk}} = \alpha_{kj}$, $\alpha_{jj} = 1$, and $|\alpha_{jk}| \le 1$.

- For each *j* define σ -difference quotient $\partial_j = \sum_{k=1}^N \alpha_{kj} \delta_k$
- We consider this derivation because φ(X_jP) = φ ⊗ φ^{op}(∂_j(P)) for P ∈ 𝒫.
- Define another derivation $\bar{\partial}_j$ so that $\partial_j(P)^{\dagger} = \bar{\partial}_j(P^*)$.
- The modular group interacts with ∂_j as follows:

$$(\sigma_i \otimes \sigma_i) \circ \partial_j \circ \sigma_{-i} = \bar{\partial}_j$$

• For $P = (P_1, ..., P_N) \in \mathscr{P}^N$ define $\mathscr{J}P, \mathscr{J}_{\sigma}P \in M_N(\mathscr{P} \otimes \mathscr{P}^{op})$ by $[\mathscr{J}P]_{jk} = \delta_k P_j \qquad [\mathscr{J}_{\sigma}P]_{jk} = \partial_k P_j$ • For $P = (P_1, \dots, P_N) \in \mathscr{P}^N$ define $\mathscr{J}P, \mathscr{J}_{\sigma}P \in M_N(\mathscr{P} \otimes \mathscr{P}^{op})$ by $[\mathscr{J}P]_{jk} = \delta_k P_j \qquad [\mathscr{J}_{\sigma}P]_{jk} = \partial_k P_j$

• $M_N(\mathbb{C}) \hookrightarrow M_N(\mathscr{P} \otimes \mathscr{P}^{op})$ in the obvious way.

Brent Nelson (UCLA)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ・ つくで

• For $P = (P_1, \ldots, P_N) \in \mathscr{P}^N$ define $\mathscr{J}P, \mathscr{J}_{\sigma}P \in M_N(\mathscr{P} \otimes \mathscr{P}^{op})$ by $[\mathscr{J}P]_{ik} = \delta_k P_i \qquad [\mathscr{J}_{\sigma}P]_{ik} = \partial_k P_i$

• $M_N(\mathbb{C}) \hookrightarrow M_N(\mathscr{P} \otimes \mathscr{P}^{op})$ in the obvious way.

• Examples:

$$[\mathscr{J}X]_{jk} = \delta_k X_j = \delta_{k=j} 1 \otimes 1 = [1]_{jk}$$
$$[\mathscr{J}_{\sigma}X]_{jk} = \partial_k X_j = \alpha_{jk} 1 \otimes 1 = \left[\frac{2}{1+A}\right]_{jk}$$

• For $P = (P_1, \ldots, P_N) \in \mathscr{P}^N$ define $\mathscr{J}P, \mathscr{J}_{\sigma}P \in M_N(\mathscr{P} \otimes \mathscr{P}^{op})$ by $[\mathscr{J}P]_{ik} = \delta_k P_i \qquad [\mathscr{J}_{\sigma}P]_{ik} = \partial_k P_i$

• $M_N(\mathbb{C}) \hookrightarrow M_N(\mathscr{P} \otimes \mathscr{P}^{op})$ in the obvious way.

• Examples:

$$[\mathscr{J}X]_{jk} = \delta_k X_j = \delta_{k=j} 1 \otimes 1 = [1]_{jk}$$
$$[\mathscr{J}_{\sigma}X]_{jk} = \partial_k X_j = \alpha_{jk} 1 \otimes 1 = \left[\frac{2}{1+A}\right]_{jk}$$

• A simple computation reveals $\mathcal{J}P = \mathcal{J}_{\sigma}P \# \mathcal{J}_{\sigma}X^{-1}$ for all $P \in (\mathscr{P}^{(R)})^N$.

• For each j we define the j-th σ -cyclic derivative $\mathcal{D}_j : \mathscr{P} \to \mathscr{P}$ by

$$\mathscr{D}_j(X_{k_1}\cdots X_{k_n})=\sum_{l=1}^n \alpha_{jk_l}\sigma_{-i}(X_{k_{l+1}}\cdots X_{k_n})X_{k_1}\cdots X_{k_{l-1}},$$

or $\mathscr{D}_j = m \circ \diamond \circ (1 \otimes \sigma_{-i}) \circ \bar{\partial}_j.$

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Brent Nelson (UCLA)

• For each j we define the *j*-th σ -cyclic derivative $\mathscr{D}_j \colon \mathscr{P} \to \mathscr{P}$ by

$$\mathscr{D}_j(X_{k_1}\cdots X_{k_n})=\sum_{l=1}^n \alpha_{jk_l}\sigma_{-i}(X_{k_{l+1}}\cdots X_{k_n})X_{k_1}\cdots X_{k_{l-1}},$$

or $\mathscr{D}_j = m \circ \diamond \circ (1 \otimes \sigma_{-i}) \circ \overline{\partial}_j$.

• We define the σ -cyclic gradient by $\mathscr{D}P = (\mathscr{D}_1P, \dots, \mathscr{D}_NP) \in \mathscr{P}^N$ for $P \in \mathscr{P}$.

→ Ξ → Ξ

• For each j we define the *j*-th σ -cyclic derivative $\mathscr{D}_j \colon \mathscr{P} \to \mathscr{P}$ by

$$\mathscr{D}_j(X_{k_1}\cdots X_{k_n})=\sum_{l=1}^n \alpha_{jk_l}\sigma_{-i}(X_{k_{l+1}}\cdots X_{k_n})X_{k_1}\cdots X_{k_{l-1}},$$

or $\mathscr{D}_j = m \circ \diamond \circ (1 \otimes \sigma_{-i}) \circ \bar{\partial}_j$.

- We define the σ -cyclic gradient by $\mathscr{D}P = (\mathscr{D}_1P, \dots, \mathscr{D}_NP) \in \mathscr{P}^N$ for $P \in \mathscr{P}$.
- Example:

$$V_0 = \frac{1}{2} \sum_{j,k=1}^{N} \left[\frac{1+A}{2} \right]_{jk} X_k X_j \in \mathscr{P}_{c.s.}^{(R,\sigma)}$$

then $\mathscr{D}V_0 = (X_1, \ldots, X_N) = X$.

• For each j we define the *j*-th σ -cyclic derivative $\mathscr{D}_j \colon \mathscr{P} \to \mathscr{P}$ by

$$\mathscr{D}_j(X_{k_1}\cdots X_{k_n})=\sum_{l=1}^n \alpha_{jk_l}\sigma_{-i}(X_{k_{l+1}}\cdots X_{k_n})X_{k_1}\cdots X_{k_{l-1}},$$

or $\mathscr{D}_j = m \circ \diamond \circ (1 \otimes \sigma_{-i}) \circ \bar{\partial}_j$.

- We define the σ -cyclic gradient by $\mathscr{D}P = (\mathscr{D}_1P, \dots, \mathscr{D}_NP) \in \mathscr{P}^N$ for $P \in \mathscr{P}$.
- Example:

$$V_0 = \frac{1}{2} \sum_{j,k=1}^{N} \left[\frac{1+A}{2} \right]_{jk} X_k X_j \in \mathscr{P}_{c.s.}^{(R,\sigma)}$$

then $\mathscr{D}V_0 = (X_1, \ldots, X_N) = X.$

• Can also define $\bar{\mathscr{D}}_j$ so that $(\mathscr{D}_j P)^* = \bar{\mathscr{D}}_j(P^*)$.

$$\psi(\mathscr{D}V \# P) = \psi \otimes \psi^{op} \otimes \mathsf{Tr}(\mathscr{J}_{\sigma}P) \qquad orall P \in \mathscr{P}^{(R)},$$

in which case we call ψ the *free Gibbs state with potential V*, and may denote it φ_V .

$$\psi(\mathscr{D}V \# P) = \psi \otimes \psi^{op} \otimes \mathsf{Tr}(\mathscr{J}_{\sigma}P) \qquad \forall P \in \mathscr{P}^{(R)},$$

in which case we call ψ the free Gibbs state with potential V, and may denote it $\varphi_V.$

• The state φ_V is unique provided $||V - V_0||_{R,\sigma}$ is small enough.

$$\psi(\mathscr{D}V \# P) = \psi \otimes \psi^{op} \otimes \mathsf{Tr}(\mathscr{J}_{\sigma}P) \qquad \forall P \in \mathscr{P}^{(R)},$$

in which case we call ψ the *free Gibbs state with potential V*, and may denote it $\varphi_V.$

- The state φ_V is unique provided $||V V_0||_{R,\sigma}$ is small enough.
- The vacuum vector state $\varphi = \varphi_{V_0}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

$$\psi(\mathscr{D}V \# P) = \psi \otimes \psi^{op} \otimes \mathsf{Tr}(\mathscr{J}_{\sigma}P) \qquad \forall P \in \mathscr{P}^{(R)},$$

in which case we call ψ the *free Gibbs state with potential V*, and may denote it φ_V .

- The state φ_V is unique provided $||V V_0||_{R,\sigma}$ is small enough.
- The vacuum vector state $\varphi = \varphi_{V_0}$.
- Consequently, $X = \mathscr{J}_{\sigma}^{*}(1)$, where $1 \in M_{N}(\mathscr{P} \otimes \mathscr{P}^{op})$ is the identity matrix.

▲日▼▲□▼▲□▼▲□▼ □ − つくで

 Idea is to suppose the law of Z = (Z₁,..., Z_N) ⊂ (L, ψ) is the free Gibbs state with potential V = V₀ + W: ψ_Z = φ_V.

ッへへ 17 / 38

3

- Idea is to suppose the law of Z = (Z₁,..., Z_N) ⊂ (L, ψ) is the free Gibbs state with potential V = V₀ + W: ψ_Z = φ_V.
- By exploiting the Schwinger-Dyson equation, we will construct $Y = (Y_1, \ldots, Y_N) \subset (M, \varphi)$ of the form $Y_j = X_j + f_j$ whose law induced by φ is also the free Gibbs state with potential V.

- Idea is to suppose the law of Z = (Z₁,..., Z_N) ⊂ (L, ψ) is the free Gibbs state with potential V = V₀ + W: ψ_Z = φ_V.
- By exploiting the Schwinger-Dyson equation, we will construct $Y = (Y_1, \ldots, Y_N) \subset (M, \varphi)$ of the form $Y_j = X_j + f_j$ whose law induced by φ is also the free Gibbs state with potential V.
- Provided $||W||_{R,\sigma}$ is small enough, the free Gibbs state with potential $V_0 + W$ will be unique and therefore we will have transport from φ_X to ψ_Z .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

• Suppose $Y = (Y_1, \ldots, Y_N)$ with $Y_j = X_j + f_j$ and $f_j \in \mathscr{P}^{(R)}$, assume assume that φ_Y satisfies the Schwinger-Dyson equation with potential $V = V_0 + W$. Then

$$\begin{aligned} (\mathscr{J}_{\sigma})_{Y}^{*}(1) &= \mathscr{D}_{Y}(V_{0}(Y) + W(Y)) \\ &= Y + (\mathscr{D}W)(Y) \\ &= X + f + (\mathscr{D}W)(X + f) \end{aligned}$$
(1)

200

18 / 38

イロト イポト イヨト イヨト 三日

• Suppose $Y = (Y_1, \ldots, Y_N)$ with $Y_j = X_j + f_j$ and $f_j \in \mathscr{P}^{(R)}$, assume assume that φ_Y satisfies the Schwinger-Dyson equation with potential $V = V_0 + W$. Then

$$(\mathscr{J}_{\sigma})_{Y}^{*}(1) = \mathscr{D}_{Y}(V_{0}(Y) + W(Y))$$

= Y + (\mathcal{D}W)(Y)
= X + f + (\mathcal{D}W)(X + f) (1)

• Need to write the left-hand side in terms of X.

18 / 38

イロト イポト イラト イラト

• Using a change of variables argument, the Schwinger-Dyson equation (1) is equivalent to

$$\mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i}) \left(\frac{1}{1+B} \right) = X + f + (\mathscr{D}W)(X+f), \qquad (2)$$

where $B = \mathscr{J}_{\sigma} f \# \mathscr{J}_{\sigma} X^{-1}$.

Brent Nelson (UCLA)

イロト イポト イヨト イヨト 三日

500

• Using a change of variables argument, the Schwinger-Dyson equation (1) is equivalent to

$$\mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i}) \left(\frac{1}{1+B} \right) = X + f + (\mathscr{D}W)(X+f), \qquad (2)$$

where $B = \mathcal{J}_{\sigma} f \# \mathcal{J}_{\sigma} X^{-1}$.

• Using identities $\frac{1}{1+x} = 1 - \frac{x}{1+x}$ and $\frac{x}{1+x} = x - \frac{x^2}{1+x}$ and multiplying by 1 + B, (2) becomes

$$-\mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i})(B) - f$$

= $\mathscr{D}(W(X+f)) + B \# f + B \# \mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i}) \left(\frac{B}{1+B}\right)$ (3)
 $-\mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i}) \left(\frac{B^{2}}{1+B}\right),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ (~)

Lemma 2.1

Let
$$g = g^* \in \mathscr{P}_{\varphi}^{(R,\sigma)}$$
 and let $f = \mathscr{D}g$. Then for any $m \ge -1$ we have:

$$B \# \mathscr{J}_{\sigma}^* \circ (1 \otimes \sigma_i)(B^{m+1}) - \mathscr{J}_{\sigma}^* \circ (1 \otimes \sigma_i)(B^{m+2}) \qquad (4)$$

$$= \frac{1}{m+2} \mathscr{D} [(\varphi \otimes 1) \circ Tr_{A^{-1}} + (1 \otimes \varphi) \circ Tr_A] (B^{m+2})$$

Brent Nelson (UCLA)

3

900

20 / 38

◆ロ > ◆母 > ◆臣 > ◆臣 >

Lemma 2.1

Let
$$g = g^* \in \mathscr{P}_{\varphi}^{(R,\sigma)}$$
 and let $f = \mathscr{D}g$. Then for any $m \ge -1$ we have:

$$B \# \mathscr{J}_{\sigma}^* \circ (1 \otimes \sigma_i)(B^{m+1}) - \mathscr{J}_{\sigma}^* \circ (1 \otimes \sigma_i)(B^{m+2}) \qquad (4)$$

$$= \frac{1}{m+2} \mathscr{D} [(\varphi \otimes 1) \circ Tr_{A^{-1}} + (1 \otimes \varphi) \circ Tr_A] (B^{m+2})$$

Proof.

We prove the equivalence weakly by taking inner products against $P \in (\mathscr{P}^{(R)})^N$. Denote the left-hand side by E_L and the right-hand side by E_R .
$$\left\langle \mathsf{P}, \; B\# \mathscr{J}_{\sigma}^{*} \circ (1\otimes \sigma_{i})(B^{m+1})
ight
angle_{arphi}$$

Э

990

$$\begin{array}{l} \mathsf{P}, \ B \# \mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i})(B^{m+1}) \rangle_{\varphi} \\ \\ = \sum_{j,k=1}^{N} \varphi \left(\mathsf{P}_{j}^{*} \cdot \mathsf{B}_{jk} \# \left[\mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i})(B^{m+1}) \right]_{k} \right) \end{array}$$

イロト イポト イヨト イヨト

590

21 / 38

Э

$$\begin{array}{l} \mathsf{P}, \ B \# \mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i})(B^{m+1}) \rangle_{\varphi} \\ &= \sum_{j,k=1}^{N} \varphi \left(\mathsf{P}_{j}^{*} \cdot B_{jk} \# \left[\mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i})(B^{m+1}) \right]_{k} \right) \\ &= \sum_{j,k=1}^{N} \varphi \left((\sigma_{i} \otimes 1)(B_{jk}^{\diamond}) \# \mathsf{P}_{j}^{*} \cdot \left[\mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i})(B^{m+1}) \right]_{k} \right) \end{array}$$

Э

990

$$P, \ B \# \mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i})(B^{m+1}) \rangle_{\varphi}$$

$$= \sum_{j,k=1}^{N} \varphi \left(P_{j}^{*} \cdot B_{jk} \# \left[\mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i})(B^{m+1}) \right]_{k} \right)$$

$$= \sum_{j,k=1}^{N} \varphi \left((\sigma_{i} \otimes 1)(B_{jk}^{\circ}) \# P_{j}^{*} \cdot \left[\mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i})(B^{m+1}) \right]_{k} \right)$$

$$= \left\langle (1 \otimes \sigma_{-i})(B^{*}) \# P, \ \mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i})(B^{m+1}) \right\rangle_{\varphi}$$

Э

990

$$\langle P, \ B \# \mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i})(B^{m+1}) \rangle_{\varphi}$$

$$= \sum_{j,k=1}^{N} \varphi \left(P_{j}^{*} \cdot B_{jk} \# \left[\mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i})(B^{m+1}) \right]_{k} \right)$$

$$= \sum_{j,k=1}^{N} \varphi \left((\sigma_{i} \otimes 1)(B_{jk}^{\diamond}) \# P_{j}^{*} \cdot \left[\mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i})(B^{m+1}) \right]_{k} \right)$$

$$= \langle (1 \otimes \sigma_{-i})(B^{*}) \# P, \ \mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i})(B^{m+1}) \rangle_{\varphi}$$

$$= \langle [\mathscr{J}_{\sigma} X^{-1} \# \hat{\sigma}_{i}(\mathscr{J}_{\sigma} f)] \# P, \ \mathscr{J}_{\sigma}^{*} \circ (1 \otimes \sigma_{i})(B^{m+1}) \rangle_{\varphi}$$

where $\hat{\sigma}_i = \sigma_i \otimes \sigma_{-i}$.

Э

990

Hence if $\phi = \varphi \otimes \varphi^{op} \otimes \text{Tr then}$

$$\langle P, E_L
angle_{arphi} = \left\langle \mathscr{J}_{\sigma} X^{-1} \# \mathscr{J}_{\sigma} \left\{ \hat{\sigma}_i (\mathscr{J}_{\sigma} f) \# P \right\}, (1 \otimes \sigma_i) (B^{m+1})
ight
angle_{\phi} \ - \left\langle \mathscr{J}_{\sigma} P, (1 \otimes \sigma_i) (B^{m+2})
ight
angle_{\phi}.$$

3

990

Hence if $\phi = \varphi \otimes \varphi^{op} \otimes \operatorname{Tr}$ then

$$\langle P, E_L \rangle_{\varphi} = \left\langle \mathscr{J}_{\sigma} X^{-1} \# \mathscr{J}_{\sigma} \left\{ \hat{\sigma}_i (\mathscr{J}_{\sigma} f) \# P \right\}, (1 \otimes \sigma_i) (B^{m+1}) \right\rangle_{\phi} \ - \left\langle \mathscr{J}_{\sigma} P, (1 \otimes \sigma_i) (B^{m+2}) \right\rangle_{\phi}.$$

The "product rule" simplifies the right-hand side to simplify to

$$\langle P, E_L \rangle_{\varphi} = \left\langle Q^P, \mathscr{J}_{\sigma} X^{-1} \# (1 \otimes \sigma_i) (B^{m+1}) \right\rangle_{\phi},$$

Э

nac

Hence if $\phi = \varphi \otimes \varphi^{\textit{op}} \otimes \mathrm{Tr}$ then

$$\langle P, E_L
angle_{arphi} = \left\langle \mathscr{J}_{\sigma} X^{-1} \# \mathscr{J}_{\sigma} \left\{ \hat{\sigma}_i (\mathscr{J}_{\sigma} f) \# P \right\}, (1 \otimes \sigma_i) (B^{m+1})
ight
angle_{\phi} \ - \left\langle \mathscr{J}_{\sigma} P, (1 \otimes \sigma_i) (B^{m+2})
ight
angle_{\phi}.$$

The "product rule" simplifies the right-hand side to simplify to

$$\langle P, E_L \rangle_{\varphi} = \left\langle Q^P, \mathscr{J}_{\sigma} X^{-1} \# (1 \otimes \sigma_i) (B^{m+1}) \right\rangle_{\phi},$$

where, if $a \otimes b \otimes c \#_1 \xi = (a \xi b) \otimes c$ and $a \otimes b \otimes c \#_2 \xi = a \otimes (b \xi c)$, then

3

nac

ヘロト 人間ト ヘヨト ヘヨト

Hence if $\phi = \varphi \otimes \varphi^{\textit{op}} \otimes \mathrm{Tr}$ then

$$\langle P, E_L
angle_{arphi} = \left\langle \mathscr{J}_{\sigma} X^{-1} \# \mathscr{J}_{\sigma} \left\{ \hat{\sigma}_i (\mathscr{J}_{\sigma} f) \# P \right\}, (1 \otimes \sigma_i) (B^{m+1})
ight
angle_{\phi} \ - \left\langle \mathscr{J}_{\sigma} P, (1 \otimes \sigma_i) (B^{m+2})
ight
angle_{\phi}.$$

The "product rule" simplifies the right-hand side to simplify to

$$\langle P, E_L \rangle_{\varphi} = \left\langle Q^P, \mathscr{J}_{\sigma} X^{-1} \# (1 \otimes \sigma_i) (B^{m+1}) \right\rangle_{\phi},$$

where, if $a \otimes b \otimes c \#_1 \xi = (a \xi b) \otimes c$ and $a \otimes b \otimes c \#_2 \xi = a \otimes (b \xi c)$, then

$$[Q^{\mathcal{P}}]_{jk} = \sum_{l=1}^{\mathcal{N}} (\partial_k \otimes 1) \circ \hat{\sigma}_i \circ \partial_l(f_j) \#_2 \mathcal{P}_l + (1 \otimes \partial_k) \circ \hat{\sigma}_i \circ \partial_l(f_j) \#_1 \mathcal{P}_l$$

3

nac

ヘロト 人間ト ヘヨト ヘヨト

So we have

$$\langle E_L, P \rangle_{\varphi} = \phi(Q^P \# \mathscr{J}_{\sigma} X^{-1} \# B^{m+1})$$

Э

990

23 / 38

Next for u = 1, ..., m + 2 let R_u be the matrix will all zero entries except $[R_u]_{i_u j_u} = a_u \otimes b_u$.

$$\sum_{k} \varphi(\bar{\mathscr{D}}_{k}(\varphi \otimes 1) \operatorname{Tr}_{\mathcal{A}^{-1}}(R_{1} \cdots R_{m+2}) P_{k})$$

$$\sum_{k} \varphi(\bar{\mathscr{D}}_{k}(\varphi \otimes 1) \operatorname{Tr}_{A^{-1}}(R_{1} \cdots R_{m+2}) P_{k})$$
$$= \sum_{k} C\varphi(a_{1} \cdots a_{m+2})\varphi(\bar{\mathscr{D}}_{k}(b_{m+2} \cdots b_{1}) P_{k})$$

$$\sum_{k} \varphi(\bar{\mathscr{D}}_{k}(\varphi \otimes 1) \operatorname{Tr}_{A^{-1}}(R_{1} \cdots R_{m+2}) P_{k})$$

$$= \sum_{k} C\varphi(a_{1} \cdots a_{m+2})\varphi(\bar{\mathscr{D}}_{k}(b_{m+2} \cdots b_{1}) P_{k})$$

$$= \sum_{k} C\varphi(a_{1} \cdots a_{m+2})\varphi(\hat{\sigma}_{i} \circ \partial_{k}(b_{m+2} \cdots b_{1}) \# P_{k})$$

$$\sum_{k} \varphi(\bar{\mathscr{D}}_{k}(\varphi \otimes 1) \operatorname{Tr}_{A^{-1}}(R_{1} \cdots R_{m+2}) P_{k})$$

$$= \sum_{k} C\varphi(a_{1} \cdots a_{m+2})\varphi(\bar{\mathscr{D}}_{k}(b_{m+2} \cdots b_{1}) P_{k})$$

$$= \sum_{k} C\varphi(a_{1} \cdots a_{m+2})\varphi(\hat{\sigma}_{i} \circ \partial_{k}(b_{m+2} \cdots b_{1}) \# P_{k})$$

$$= \sum_{k,u} C\varphi(\sigma_{i}(a_{u} \cdots a_{m+2}) a_{1} \cdots a_{u-1})$$

$$\times \varphi(b_{u-1} \cdots b_{1} \sigma_{i}(b_{m+2} \cdots b_{u+1}) \cdot \hat{\sigma}_{i} \circ \partial_{k}(b_{u}) \# P_{k})$$

$$\sum_{k} \varphi(\bar{\mathscr{D}}_{k}(\varphi \otimes 1) \operatorname{Tr}_{A^{-1}}(R_{1} \cdots R_{m+2}) P_{k})$$

$$= \sum_{k} C\varphi(a_{1} \cdots a_{m+2}) \varphi(\bar{\mathscr{D}}_{k}(b_{m+2} \cdots b_{1}) P_{k})$$

$$= \sum_{k} C\varphi(a_{1} \cdots a_{m+2}) \varphi(\hat{\sigma}_{i} \circ \partial_{k}(b_{m+2} \cdots b_{1}) \# P_{k})$$

$$= \sum_{k,u} C\varphi(\sigma_{i}(a_{u} \cdots a_{m+2}) a_{1} \cdots a_{u-1})$$

$$\times \varphi(b_{u-1} \cdots b_{1} \sigma_{i}(b_{m+2} \cdots b_{u+1}) \cdot \hat{\sigma}_{i} \circ \partial_{k}(b_{u}) \# P_{k})$$

$$= \sum_{u} \phi(\Delta_{(1,P)}(R_{u})(\sigma_{i} \otimes \sigma_{i})(R_{u+1} \cdots R_{m+2}) A^{-1}R_{1} \cdots R_{u-1})$$

Where for an arbitrary matrix O

$$[\Delta_{(1,P)}(O)]_{jk} = \sum_{l} \sigma_{i} \otimes (\hat{\sigma}_{i} \circ \partial_{l})([O]_{jk}) \#_{2} P_{l}$$

Э

990

Where for an arbitrary matrix O

$$[\Delta_{(1,\mathcal{P})}(\mathcal{O})]_{jk} = \sum_{I} \sigma_i \otimes (\hat{\sigma}_i \circ \partial_I)([\mathcal{O}]_{jk}) \#_2 \mathcal{P}_I.$$

Where for an arbitrary matrix O

$$[\Delta_{(1,\mathcal{P})}(\mathcal{O})]_{jk} = \sum_{I} \sigma_i \otimes (\hat{\sigma}_i \circ \partial_I)([\mathcal{O}]_{jk}) \#_2 \mathcal{P}_I.$$

$$\sum_{k} \varphi(\bar{\mathscr{D}}_{k}(\varphi \otimes 1) \operatorname{Tr}_{A^{-1}}(B^{m+2}) P_{k})$$
$$= \sum_{u} \phi(\Delta_{(1,P)}(B)(\sigma_{i} \otimes \sigma_{i})(B^{m+2-u}) A^{-1} B^{u-1})$$

Where for an arbitrary matrix O

$$[\Delta_{(1,\mathcal{P})}(\mathcal{O})]_{jk} = \sum_{I} \sigma_i \otimes (\hat{\sigma}_i \circ \partial_I)([\mathcal{O}]_{jk}) \#_2 \mathcal{P}_I.$$

$$\sum_{k} \varphi(\bar{\mathscr{D}}_{k}(\varphi \otimes 1) \operatorname{Tr}_{A^{-1}}(B^{m+2}) P_{k})$$

$$= \sum_{u} \phi(\Delta_{(1,P)}(B)(\sigma_{i} \otimes \sigma_{i})(B^{m+2-u}) A^{-1} B^{u-1})$$

$$= (m+2)\phi(\Delta_{(1,P)}(B) A^{-1} B^{m+1})$$

Where for an arbitrary matrix O

$$[\Delta_{(1,\mathcal{P})}(\mathcal{O})]_{jk} = \sum_{l} \sigma_{i} \otimes (\hat{\sigma}_{i} \circ \partial_{l})([\mathcal{O}]_{jk}) \#_{2} \mathcal{P}_{l}.$$

$$\langle \mathscr{D}(\varphi \otimes 1) \operatorname{Tr}_{A^{-1}}(B^{m+2}), P \rangle_{\varphi}$$

= $\sum_{u} \phi(\Delta_{(1,P)}(B)(\sigma_{i} \otimes \sigma_{i})(B^{m+2-u})A^{-1}B^{u-1})$
= $(m+2)\phi(\Delta_{(1,P)}(B)A^{-1}B^{m+1})$

Similarly,

$$\left\langle \mathscr{D}(1\otimes arphi)\mathsf{Tr}_{\mathcal{A}}(B^{m+2}), \mathcal{P} \right\rangle_{arphi} = (m+2)\phi(\Delta_{(2,\mathcal{P})}(B)AB^{m+1}),$$

where

$$[\Delta_{(2,P)}(O)]_{jk} = \sum_{l} (\hat{\sigma}_{i} \circ \partial_{l}) \otimes \sigma_{-i}([O]_{jk}) \#_{1} P_{l}$$

Э

990

Similarly,

$$\left\langle \mathscr{D}(1\otimes \varphi)\mathsf{Tr}_{\mathcal{A}}(B^{m+2}), \mathcal{P} \right\rangle_{\varphi} = (m+2)\phi(\Delta_{(2,\mathcal{P})}(B)AB^{m+1}),$$

where

$$[\Delta_{(2,P)}(O)]_{jk} = \sum_{l} (\hat{\sigma}_{i} \circ \partial_{l}) \otimes \sigma_{-i}([O]_{jk}) \#_{1}P_{l}.$$

To finish the proof we simply verify that

$$Q^{P} \# \mathscr{J}_{\sigma} X^{-1} = \Delta_{(1,P)}(B) A^{-1} + \Delta_{(2,P)}(B) A,$$

which follows from their definitions after decomposing the various derivations as linear combinations of the free difference quotients δ_k .

< //2 ▶ < 三 ▶

$$\mathcal{N}(X_{\underline{i}}) = |\underline{i}| X_{\underline{i}}$$
 $\Sigma(X_{\underline{i}}) = \frac{1}{|\underline{i}|} X_{\underline{i}}$

900

27 / 38

• Recall $f = \mathscr{D}g$, and $B = \mathscr{J}_{\sigma}f \# \mathscr{J}_{\sigma}X^{-1} = \mathscr{J}f$. Set

 $Q(g) = [(1 \otimes \varphi) \circ \mathsf{Tr}_{A} + (\varphi \otimes 1) \circ \mathsf{Tr}_{A^{-1}}](B - \log(1 + B)),$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ・ つくで

• Recall $f = \mathscr{D}g$, and $B = \mathscr{J}_{\sigma}f \# \mathscr{J}_{\sigma}X^{-1} = \mathscr{J}f$. Set

$$Q(g) = [(1 \otimes \varphi) \circ \mathsf{Tr}_{\mathcal{A}} + (\varphi \otimes 1) \circ \mathsf{Tr}_{\mathcal{A}^{-1}}](B - \log(1 + B)),$$

• Then by comparing power series the previous lemma implies

$$\mathscr{D} \mathcal{Q}(g) = B \# \mathscr{J}_{\sigma}^* \circ (1 \otimes \sigma) \left(rac{B}{1+B}
ight) - \mathscr{J}_{\sigma}^* \circ (1 \otimes \sigma_i) \left(rac{B^2}{1+B}
ight).$$

イロト イポト イヨト イヨト 三日

500

28 / 38

• Recall $f = \mathscr{D}g$, and $B = \mathscr{J}_{\sigma}f \# \mathscr{J}_{\sigma}X^{-1} = \mathscr{J}f$. Set

$$Q(g) = [(1 \otimes arphi) \circ \mathsf{Tr}_{\mathcal{A}} + (arphi \otimes 1) \circ \mathsf{Tr}_{\mathcal{A}^{-1}}](B - \log(1 + B)),$$

• Then by comparing power series the previous lemma implies

$$\mathscr{D} \mathcal{Q}(g) = B \# \mathscr{J}_{\sigma}^* \circ (1 \otimes \sigma) \left(rac{B}{1+B}
ight) - \mathscr{J}_{\sigma}^* \circ (1 \otimes \sigma_i) \left(rac{B^2}{1+B}
ight).$$

Lemma 2.2

Assume $f = \mathscr{D}g$ for $g = g^* \in \mathscr{P}_{\varphi}^{(R,\sigma)}$ and $\|\mathscr{J}\mathscr{D}g\|_{R\otimes_{\pi}R} < 1$. Then equation (3) is equivalent to

$$\mathscr{D}\{[(\varphi \otimes 1) \circ Tr_{A^{-1}} + (1 \otimes \varphi) \circ Tr_{A}](\mathscr{J}\mathscr{D}g) - \mathscr{N}g\}$$

$$= \mathscr{D}(W(X + \mathscr{D}g)) + \mathscr{D}Q(g) + (\mathscr{J}\mathscr{D}g) \# \mathscr{D}g$$
(5)

3

Corollary 2.3

Let $g \in \mathscr{P}_{c.s.}^{(R,\sigma)}$ and assume that $\|g\|_{R,\sigma} < R^2/2$. Let $S \ge R + \|g\|_{R,\sigma}$. Let $S \ge R + \|g\|_{R,\sigma}$ and let $W \in \mathscr{P}_{c.s.}^{(S)}$. Assume $|\varphi(X_j)| \le C_0^{|j|}$ for all \underline{j} and some $C_0 > 0$ and furthermore that $C_0/R < 1/2$. Let

$$F(g) = -W(X + \mathscr{D}\Sigma g) - \frac{1}{2} \{ \mathscr{J}_{\sigma} X^{-1} \# \mathscr{D}\Sigma g \} \# \mathscr{D}\Sigma g$$

+ $[(1 \otimes \varphi) \circ Tr_{A} + (\varphi \otimes 1) \circ Tr_{A^{-1}}] (\mathscr{J} \mathscr{D}\Sigma g) - Q(\Sigma g)$

Then F(g) is a well-defined function from $\mathscr{P}_{c.s.}^{(R,\sigma)}$ to $\mathscr{P}_{\varphi}^{(R,\sigma)}$. In particular, if we fix $0 < \rho \leq 1$ and $R > 4\sqrt{\|A\|}$, then $\|W\|_{R,\sigma} < \frac{\rho}{2N}$ and $\sum_{j} \|\delta_{j}(W)\|_{(R+\rho)\otimes_{\pi}(R+\rho)} < \frac{1}{8}$ imply that

$$E_1 := \left\{ g \in \mathscr{P}_{c.s.}^{(R,\sigma)} \colon \|g\|_{R,\sigma} < \frac{\rho}{N} \right\} \stackrel{F}{\mapsto} \left\{ g \in \mathscr{P}_{\varphi}^{(R,\sigma)} \colon \|g\|_{R,\sigma} < \frac{\rho}{N} \right\} =: E_2$$

and is uniformly contractive with constant $\lambda \leq \frac{1}{2}$ on E_1 .

Brent Nelson (UCLA)

$$\mathscr{S}(X_{\underline{j}}) = \frac{1}{|\underline{j}|} \sum_{n=0}^{|\underline{j}|-1} \rho^n(X_{\underline{j}}),$$

and $\mathscr{S}(c) = c$ for $c \in \mathbb{C}$.

୬ < (~ 30 / 38

Brent Nelson (UCLA)

$$\mathscr{S}(X_{\underline{j}}) = \frac{1}{|\underline{j}|} \sum_{n=0}^{|\underline{j}|-1} \rho^n(X_{\underline{j}}),$$

and $\mathscr{S}(c) = c$ for $c \in \mathbb{C}$. Then \mathscr{S} is a contraction from $\mathscr{P}_{\varphi}^{(R,\sigma)}$ into $\mathscr{P}_{c.s.}^{(R,\sigma)}$.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Sac

30 / 38

$$\mathscr{S}(X_{\underline{j}}) = \frac{1}{|\underline{j}|} \sum_{n=0}^{|\underline{j}|-1} \rho^n(X_{\underline{j}}),$$

and $\mathscr{S}(c) = c$ for $c \in \mathbb{C}$. Then \mathscr{S} is a contraction from $\mathscr{P}_{\varphi}^{(R,\sigma)}$ into $\mathscr{P}_{c.s.}^{(R,\sigma)}$. Denote

$$\Pi = id - \pi_0$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Proposition 2.4

Assume that for some $R > 4\sqrt{\|A\|}$ and some $0 < \rho \le 1$, $W \in \mathscr{P}_{c.s.}^{(R+\rho,\sigma)} \subset \mathscr{P}_{c.s.}^{(R,\sigma)}$ and that $\|W\|_{R,\sigma} < \frac{\rho}{2N}$ and $\sum_{j} \|\delta_{j}(W)\|_{(R+\rho)\otimes_{\pi}(R+\rho)} < \frac{1}{8}$. Then there exists \hat{g} and $g = \Sigma \hat{g}$ such that:

(i)
$$\hat{g}, g \in \mathscr{P}_{c.s.}^{(R,\sigma)}$$

(ii) \hat{g} satisfies $\hat{g} = \mathscr{S}\Pi F(\hat{g})$ and g satisfies
 $\mathscr{N}g = \mathscr{S}\Pi \left[-W(X + \mathscr{D}g) - \frac{1}{2} \{ \mathscr{J}_{\sigma} X^{-1} \# \mathscr{D}g \} \# \mathscr{D}g - Q(g) + [(1 \otimes \varphi) \circ Tr_{A} + (\varphi \otimes 1) \circ Tr_{A^{-1}}] (\mathscr{J}\mathscr{D}g) \right]$

(iii) If W is self-adjoint, then so are \hat{g} and g.

Proof.

Set $\hat{g}_0 = W(X_1, \dots, X_N) \in E_1$ and for each $k \in \mathbb{N}$, $\hat{g}_k := \mathscr{S} \sqcap F(\hat{g}_{k-1})$.

< 日 > < 同 > < 三 > < 三 >

= nac

Proof.

Set $\hat{g}_0 = W(X_1, \dots, X_N) \in E_1$ and for each $k \in \mathbb{N}$, $\hat{g}_k := \mathscr{S} \prod F(\hat{g}_{k-1})$. We have

$$E_1 \stackrel{F}{\longrightarrow} E_2 \stackrel{\mathscr{S}\Pi}{\longrightarrow} E_1,$$

< 日 > < 同 > < 三 > < 三 >

3

Sac

Proof.

Set $\hat{g}_0 = W(X_1, \dots, X_N) \in E_1$ and for each $k \in \mathbb{N}$, $\hat{g}_k := \mathscr{S} \prod F(\hat{g}_{k-1})$. We have

$$E_1 \stackrel{F}{\longrightarrow} E_2 \stackrel{\mathscr{S}\Pi}{\longrightarrow} E_1,$$

so that $\{\hat{g}_k\}_{k\in\mathbb{N}}$ is a sequence in E_1 with $\|\hat{g}_k - \hat{g}_{k-1}\|_{R,\sigma} \leq \frac{1}{2} \|\hat{g}_{k-1} - \hat{g}_{k-2}\|_{R,\sigma}$.
Proof.

Set $\hat{g}_0 = W(X_1, \ldots, X_N) \in E_1$ and for each $k \in \mathbb{N}$, $\hat{g}_k := \mathscr{S} \prod F(\hat{g}_{k-1})$. We have

$$E_1 \stackrel{F}{\longrightarrow} E_2 \stackrel{\mathscr{S}\Pi}{\longrightarrow} E_1,$$

so that $\{\hat{g}_k\}_{k\in\mathbb{N}}$ is a sequence in E_1 with $\|\hat{g}_k - \hat{g}_{k-1}\|_{R,\sigma} \leq \frac{1}{2} \|\hat{g}_{k-1} - \hat{g}_{k-2}\|_{R,\sigma}$. Thus $\{\hat{g}_k\}$ converges to some $\hat{g} \in \mathscr{P}_{c.s.}^{(R,\sigma)}$ which is a fixed point of $\mathscr{S}\Pi F$. We note $\hat{g} \neq 0$ since $\mathscr{S}\Pi F(0) = \mathscr{S}\Pi(W) = W \neq 0$.

32 / 38

Proof.

Set $\hat{g}_0 = W(X_1, \ldots, X_N) \in E_1$ and for each $k \in \mathbb{N}$, $\hat{g}_k := \mathscr{S} \prod F(\hat{g}_{k-1})$. We have

$$E_1 \stackrel{F}{\longrightarrow} E_2 \stackrel{\mathscr{S}\Pi}{\longrightarrow} E_1,$$

so that $\{\hat{g}_k\}_{k\in\mathbb{N}}$ is a sequence in E_1 with $\|\hat{g}_k - \hat{g}_{k-1}\|_{R,\sigma} \leq \frac{1}{2} \|\hat{g}_{k-1} - \hat{g}_{k-2}\|_{R,\sigma}$. Thus $\{\hat{g}_k\}$ converges to some $\hat{g} \in \mathscr{P}_{c.s.}^{(R,\sigma)}$ which is a fixed point of $\mathscr{S}\Pi F$. We note $\hat{g} \neq 0$ since $\mathscr{S}\Pi F(0) = \mathscr{S}\Pi(W) = W \neq 0$. Setting $g = \Sigma \hat{g}$ (so $\mathscr{N}g = \hat{g}$), yields (i) and (ii).

32 / 38

Proof.

Set $\hat{g}_0 = W(X_1, \ldots, X_N) \in E_1$ and for each $k \in \mathbb{N}$, $\hat{g}_k := \mathscr{S} \prod F(\hat{g}_{k-1})$. We have

$$E_1 \stackrel{F}{\longrightarrow} E_2 \stackrel{\mathscr{S}\Pi}{\longrightarrow} E_1,$$

so that $\{\hat{g}_k\}_{k\in\mathbb{N}}$ is a sequence in E_1 with $\|\hat{g}_k - \hat{g}_{k-1}\|_{R,\sigma} \leq \frac{1}{2}\|\hat{g}_{k-1} - \hat{g}_{k-2}\|_{R,\sigma}$. Thus $\{\hat{g}_k\}$ converges to some $\hat{g} \in \mathscr{P}_{c.s.}^{(R,\sigma)}$ which is a fixed point of $\mathscr{S}\Pi F$. We note $\hat{g} \neq 0$ since $\mathscr{S}\Pi F(0) = \mathscr{S}\Pi(W) = W \neq 0$. Setting $g = \Sigma \hat{g}$ (so $\mathscr{N}g = \hat{g}$), yields (i) and (ii). If W is self adjoint then it follows that $\mathscr{S}\Pi F(h)^* = \mathscr{S}\Pi F(h)$ for $h = h^*$ and hence the sequence $\{\hat{g}_k\}$ is self-adjoint.

Theorem 2.5

Let $R' > R > 4\sqrt{\|A\|}$. Then there exists a constant C > 0 depending only on R, R', and N so that whenever $W = W^* \in \mathscr{P}_{c.s.}^{(R',\sigma)}$ satisfies $\|W\|_{R'+1,\sigma} < C$, there exists $f \in \mathscr{P}^{(R)}$ which satisfies equation (2). In addition, $f = \mathscr{D}g$ for $g \in \mathscr{P}_{c.s.}^{(R,\sigma)}$. The solution $f = f_W$ satisfies $\|f_W\|_R \to 0$ as $\|W\|_{R'+1,\sigma} \to 0$.

33 / 38

Theorem 2.6

Let φ be a free quasi-free state corresponding to A, and let $X_1, \ldots, X_N \in (M, \varphi)$ be self-adjiont elements whose law φ_X is the unique Gibbs law with potential V_0 . Let $R' > R > 4\sqrt{\|A\|}$. Then there exists C > 0 depending only on R, R', and N so that whenever $W = W^* \in \mathscr{P}_{c.s.}^{(R'+1,\sigma)}$ satisfies $\|W\|_{R'+1,\sigma} < C$, there exists $G \in \mathscr{P}_{c.s.}^{(R,\sigma)}$ so that:

- (1) If we set $Y_j = \mathscr{D}_j G$ then $Y_1, \ldots, Y_N \in \mathscr{P}^{(R)}$ has the law φ_V , with $V = V_0 + W$;
- (2) $X_j = H_j(Y_1, \ldots, Y_N)$ for some $H_j \in \mathscr{P}^{(R)}$;
- (3) if $R' > R\sqrt{\|A\|}$ then $(\sigma_{i/2} \otimes 1)(\mathscr{J}_{\sigma}\mathscr{D}G) \ge 0$.

In particular, there are state-preserving isomorphisms

$$C^*(\varphi_V) \cong \Gamma(\mathcal{H}_{\mathbb{R}}, U_t), \qquad W^*(\varphi_V) \cong \Gamma(\mathcal{H}_{\mathbb{R}}, U_t)''.$$

・ロト ・雪ト ・ヨト ・ヨー

• Let $M_q = \Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$, so that M_q is generated by $Z_j = s_q(e_j)$.

Brent Nelson (UCLA) Free monotone transport without a trace

- Let $M_q = \Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$, so that M_q is generated by $Z_j = s_q(e_j)$.
- Let $\Xi_q = \sum_{n=0}^{\infty} q^n P_n \in HS(\mathcal{F}_q(\mathcal{H}))$, where P_n is the projection onto vectors of tensor length n.

200

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

- Let $M_q = \Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$, so that M_q is generated by $Z_j = s_q(e_j)$.
- Let $\Xi_q = \sum_{n=0}^{\infty} q^n P_n \in HS(\mathcal{F}_q(\mathcal{H}))$, where P_n is the projection onto vectors of tensor length n.
- Can identify L²(M_q ⊗ M^{op}_q) with HS(F_q(H)) via a ⊗ b^{op} → ⟨bΩ, ·Ω⟩ aΩ. For example 1 ⊗ 1° → P₀.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ シック◇

- Let $M_q = \Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$, so that M_q is generated by $Z_j = s_q(e_j)$.
- Let $\Xi_q = \sum_{n=0}^{\infty} q^n P_n \in HS(\mathcal{F}_q(\mathcal{H}))$, where P_n is the projection onto vectors of tensor length n.
- Can identify $L^2(M_q \bar{\otimes} M_q^{op})$ with $HS(\mathcal{F}_q(\mathcal{H}))$ via $a \otimes b^{op} \mapsto \langle b\Omega, \cdot \Omega \rangle a\Omega$. For example $1 \otimes 1^{\circ} \mapsto P_0$.
- Define $\partial_j^{(q)}(Z_k) = \alpha_{kj} \Xi_q$, then $\partial_j^{(0)} = \partial_j$ and $\partial_j^{(q)}(P) = \partial_j(P) \# \Xi_q$

▲冊▶▲■▶▲■▶ ■ 釣ぬ⊙

- Let $M_q = \Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$, so that M_q is generated by $Z_j = s_q(e_j)$.
- Let $\Xi_q = \sum_{n=0}^{\infty} q^n P_n \in HS(\mathcal{F}_q(\mathcal{H}))$, where P_n is the projection onto vectors of tensor length n.
- Can identify $L^2(M_q \bar{\otimes} M_q^{op})$ with $HS(\mathcal{F}_q(\mathcal{H}))$ via $a \otimes b^{op} \mapsto \langle b\Omega, \cdot \Omega \rangle a\Omega$. For example $1 \otimes 1^{\circ} \mapsto P_0$.
- Define $\partial_j^{(q)}(Z_k) = \alpha_{kj} \Xi_q$, then $\partial_j^{(0)} = \partial_j$ and $\partial_j^{(q)}(P) = \partial_j(P) \# \Xi_q$
- $\varphi(Z_j P) = \varphi \otimes \varphi^{op}(\partial_j^{(q)}(P))$ for $P \in \mathscr{P}(Z)$.

- Let $M_q = \Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$, so that M_q is generated by $Z_j = s_q(e_j)$.
- Let $\Xi_q = \sum_{n=0}^{\infty} q^n P_n \in HS(\mathcal{F}_q(\mathcal{H}))$, where P_n is the projection onto vectors of tensor length n.
- Can identify $L^2(M_q \bar{\otimes} M_q^{op})$ with $HS(\mathcal{F}_q(\mathcal{H}))$ via $a \otimes b^{op} \mapsto \langle b\Omega, \cdot \Omega \rangle a\Omega$. For example $1 \otimes 1^{\circ} \mapsto P_0$.
- Define $\partial_j^{(q)}(Z_k) = \alpha_{kj} \Xi_q$, then $\partial_j^{(0)} = \partial_j$ and $\partial_j^{(q)}(P) = \partial_j(P) \# \Xi_q$
- $\varphi(Z_j P) = \varphi \otimes \varphi^{op}(\partial_j^{(q)}(P))$ for $P \in \mathscr{P}(Z)$.
- But we need $\xi_j \in L^2(M_q, \varphi)$ such that $\varphi(\xi_j P) = \varphi \otimes \varphi^{op}(\partial_j(P))$ so that we can satisfy the Scwhinger-Dyson equation.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = - のぐぐ

- Let $M_q = \Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$, so that M_q is generated by $Z_j = s_q(e_j)$.
- Let $\Xi_q = \sum_{n=0}^{\infty} q^n P_n \in HS(\mathcal{F}_q(\mathcal{H}))$, where P_n is the projection onto vectors of tensor length n.
- Can identify $L^2(M_q \bar{\otimes} M_q^{op})$ with $HS(\mathcal{F}_q(\mathcal{H}))$ via $a \otimes b^{op} \mapsto \langle b\Omega, \cdot \Omega \rangle a\Omega$. For example $1 \otimes 1^{\circ} \mapsto P_0$.
- Define $\partial_j^{(q)}(Z_k) = \alpha_{kj} \Xi_q$, then $\partial_j^{(0)} = \partial_j$ and $\partial_j^{(q)}(P) = \partial_j(P) \# \Xi_q$
- $\varphi(Z_j P) = \varphi \otimes \varphi^{op}(\partial_j^{(q)}(P))$ for $P \in \mathscr{P}(Z)$.
- But we need $\xi_j \in L^2(M_q, \varphi)$ such that $\varphi(\xi_j P) = \varphi \otimes \varphi^{op}(\partial_j(P))$ so that we can satisfy the Scwhinger-Dyson equation.
- ξ_j are called the conjugate variables of Z_1, \ldots, Z_N with respect to $\partial_1, \ldots, \partial_N$ and in fact are merely $\partial_i^* (1 \otimes 1)$.

- Let $M_a = \Gamma_a(\mathcal{H}_{\mathbb{R}}, U_t)''$, so that M_a is generated by $Z_i = s_a(e_i)$.
- Let $\Xi_a = \sum_{n=0}^{\infty} q^n P_n \in HS(\mathcal{F}_q(\mathcal{H}))$, where P_n is the projection onto vectors of tensor length n.
- Can identify $L^2(M_a \bar{\otimes} M_a^{op})$ with $HS(\mathcal{F}_q(\mathcal{H}))$ via $a \otimes b^{op} \mapsto \langle b\Omega, \cdot \Omega \rangle a\Omega$. For example $1 \otimes 1^{\circ} \mapsto P_0$.
- Define $\partial_i^{(q)}(Z_k) = \alpha_{kj} \Xi_q$, then $\partial_i^{(0)} = \partial_i$ and $\partial_i^{(q)}(P) = \partial_i(P) \# \Xi_q$
- $\varphi(Z_i P) = \varphi \otimes \varphi^{op}(\partial_i^{(q)}(P))$ for $P \in \mathscr{P}(Z)$.
- But we need $\xi_i \in L^2(M_a, \varphi)$ such that $\varphi(\xi_i P) = \varphi \otimes \varphi^{op}(\partial_i(P))$ so that we can satisfy the Scwhinger-Dyson equation.
- ξ_i are called the conjugate variables of Z_1, \ldots, Z_N with respect to $\partial_1, \ldots, \partial_N$ and in fact are merely $\partial_i^* (1 \otimes 1)$.
- Do not necessarily exist, but for small enough |q| they do with $\xi_i = \partial_i^{(q)*} \circ \hat{\sigma}_{-i}(\left[\Xi_q^{-1}\right]^*).$

$$V = \Sigma \left(\sum_{j,k=1}^{N} \left[\frac{1+A}{2} \right]_{jk} \xi_k Z_j \right) \qquad V_0 = \frac{1}{2} \sum_{j,k=1}^{N} \left[\frac{1+A}{2} \right]_{jk} Z_k Z_j,$$

and let $W = V - V_0$.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 句 ◆ ○

$$V = \Sigma \left(\sum_{j,k=1}^{N} \left[\frac{1+A}{2} \right]_{jk} \xi_k Z_j \right) \qquad V_0 = \frac{1}{2} \sum_{j,k=1}^{N} \left[\frac{1+A}{2} \right]_{jk} Z_k Z_j,$$

and let $W = V - V_0$.

• Then $\mathscr{D}_{Z_j}V = \xi_j$ and so the vacuum state φ satisfies the Schwinger-Dyson equation with potential V:

$$\varphi(\mathscr{D}_{Z}V\#P)=\varphi\otimes\varphi^{op}((\mathscr{J}_{\sigma})_{Z}(P)).$$

200

イロト イポト イヨト イヨト 三日

$$V = \Sigma \left(\sum_{j,k=1}^{N} \left[\frac{1+A}{2} \right]_{jk} \xi_k Z_j \right) \qquad V_0 = \frac{1}{2} \sum_{j,k=1}^{N} \left[\frac{1+A}{2} \right]_{jk} Z_k Z_j,$$

and let $W = V - V_0$.

• Then $\mathscr{D}_{Z_j}V = \xi_j$ and so the vacuum state φ satisfies the Schwinger-Dyson equation with potential V:

$$\varphi(\mathscr{D}_{Z}V\#P)=\varphi\otimes\varphi^{op}((\mathscr{J}_{\sigma})_{Z}(P)).$$

• So to show $M = M_0 \cong M_q$, suffices to show $||W||_{R,\sigma}$ can be made small.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

$$V = \Sigma \left(\sum_{j,k=1}^{N} \left[\frac{1+A}{2} \right]_{jk} \xi_k Z_j \right) \qquad V_0 = \frac{1}{2} \sum_{j,k=1}^{N} \left[\frac{1+A}{2} \right]_{jk} Z_k Z_j,$$

and let $W = V - V_0$.

• Then $\mathscr{D}_{Z_j}V = \xi_j$ and so the vacuum state φ satisfies the Schwinger-Dyson equation with potential V:

$$\varphi(\mathscr{D}_{Z}V\#P)=\varphi\otimes\varphi^{op}((\mathscr{J}_{\sigma})_{Z}(P)).$$

- So to show $M = M_0 \cong M_q$, suffices to show $||W||_{R,\sigma}$ can be made small.
- Turns out it suffices to show ||(σ_i ⊗ 1)(Ξ⁻¹_q) − 1 ⊗ 1||_{R⊗πR} can be made small.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$$V = \Sigma \left(\sum_{j,k=1}^{N} \left[\frac{1+A}{2} \right]_{jk} \xi_k Z_j \right) \qquad V_0 = \frac{1}{2} \sum_{j,k=1}^{N} \left[\frac{1+A}{2} \right]_{jk} Z_k Z_j,$$

and let $W = V - V_0$.

• Then $\mathscr{D}_{Z_j}V = \xi_j$ and so the vacuum state φ satisfies the Schwinger-Dyson equation with potential V:

$$\varphi(\mathscr{D}_{Z}V\#P)=\varphi\otimes\varphi^{op}((\mathscr{J}_{\sigma})_{Z}(P)).$$

- So to show $M = M_0 \cong M_q$, suffices to show $||W||_{R,\sigma}$ can be made small.
- Turns out it suffices to show $\|(\sigma_i \otimes 1)(\Xi_q^{-1}) 1 \otimes 1\|_{R \otimes_{\pi} R}$ can be made small.
- By adapting the estimates of Dabrowski in [1], can show this quantity tends to zero as $|q| \rightarrow 0$.

Theorem 3.1

For $\mathcal{H}_{\mathbb{R}}$ finite dimensional, then there exists $\epsilon > 0$ depending on N such that $|q| < \epsilon$ implies

 $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t) \cong \Gamma_0(\mathcal{H}_{\mathbb{R}}, U_t)$ and $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)'' \cong \Gamma_0(\mathcal{H}_{\mathbb{R}}, U_t)''$.

In particular, if G is the multiplicative subgroup of \mathbb{R}_+^\times generated by the spectrum of A then

$$\Gamma_{q}(\mathcal{H}_{\mathbb{R}}, U_{t})'' \text{ is a factor of type } \begin{cases} III_{1} & \text{if } G = \mathbb{R}_{+}^{\times} \\ III_{\lambda} & \text{if } G = \lambda^{\mathbb{Z}}, \ 0 < \lambda < 1 \\ II_{1} & \text{if } G = \{1\}. \end{cases}$$

Moreover $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$ is full.

- Y. Dabrowski; *A free stochastic partial differential equation*, Preprint, arXiv.org:1008:4742, 2010.
- A. Guionnet and E. Maurel-Segala, *Combinatorial aspects of matrix models*, ALEA Lat. Am. J. Probab. Math. Stat. **1** (2006), 241-279. MR 2249657 (2007g:05087)
- A. Guionnet and D. Shlyakhtenko, *Free monotone transport*, Preprint, arXiv:1204.2182v2, 2012
 - F. Hiai; q-deformed Araki-Woods algebras, Operator algebras and mathematical physics (Constanţa, 2001) Theta, Bucharest, 2003, pp.169-202.
- D. Shlyakhtenko; *Free quasi-free states*, Pacific J. Mathematics, **177**(1997), 329-368.